凧型二十四面体 -高い近似-2017/11/10 00:23

一週間ほど前に記した、ユニット折り紙の「凧型二十四面体」をつくってみた。以前つくった記憶はあるのだが、メモが見つからないので、同じものかどうかはわからない。というより、想像と記憶よりきれいにできたので、昔つくったのものとは、違うような気がする。
凧型二十四面体

球に内接する、面の多い立体なので、ころころと可愛らしい。
なお、凧型二十四面体の折り紙には、わたしの知る限り、川村みゆきさんの作例がある(『多面体の折紙』)。それは、ここで紹介するものとは異なるが、しっかり組めて、外側の面に余計な折り目のでない、優れたモデルである。

ここでは、凧型を内接させる長方形を考え、それを基本にした。この長方形の縦横の比(すなわち、凧型の対角線の比)は、2:1.7927...になる(図)。

この比率は、1:2の単純な長方形から、工程数少なく、高い近似で折り出せる。(図の下:(5-√2)/2=1.7928...)
凧型二十四面体の面

さらに、√(31-8√2)/7=0.6338...を、やや精度の低い近似だが、(√2+1)/4=0.603...で近似してしまう。すると、1:2の長方形を使って、工程数少なく、無駄な折り目のないモジュールをつくることができた。ポケットとフラップも悪くない感じで、無理なく組める。24個同じものをつくるので、簡単に折ることができるのはよい。

面白いのは、凧型の短い対角線の長さを2としたときの、長い対角線1.792...の近似である。(5-√2)/2が、できすぎなほどに精度が高いのだ。

この近似は、ふつうサイズの紙を使うと、紙の厚さより一桁以上低い精度である。完全一致と一瞬思ったほどである。しかし、二重根号は、√(a±2√b)と変形して、a^2-4bが平方数でないとはずせないので、ふたつの長さの二重根号をはずすことはできない。無理数の和が有理数になることはあるが、二重根号の和で二重根号がとれるということがあるとも思えない。まあ、それ以前に、じっさい、数値は微妙に違うのであった。これには、マーティン・ガードナー氏のエイプリールフールねた「e^π√163は整数になる」を連想した。
(じっさいは、262537412640768743.99999999999925...)

なお、余計な折り目がつくために採用しなかったが、対角線の交点から鈍角の頂点の長さ√(31-8√2)/7=0.63384...も、近似による長い対角線の√2/4で近似(作図、工程は難しくない)すると、(5√2-2)/8=0.63388..と、これまたびっくりの、精度の高い近似になる。

ちなみに、凧型の短辺と長辺の長さの比は、じっさいに、うまく二重根号がとれて、2 : 4-√2になる。

こうした対称性の高い立体の比率を確認していると、うまいぐあいに式が整理できるなあと思うことと、なんでこんな面倒な式のままなのだと思うことの2種類の場合がある。この立体の場合は、微妙に複雑だなあ、という感想だ。しかし、二重根号の値が「きれいじゃない」と思うのも、また色眼鏡だろう。この凧型の対角線にでてくる二重根号の式は、√(a±2√b)のかたちにすると、いずれもa=b-1であり、かつbが2の累乗である。「理屈」はわからない(ひねり出せない)が、きれいといえばきれいである。