√2に関する式など2015/09/09 23:42

台風で家の前の道が川になっていたので(?)、仕事を休むことになり、久しぶりの予定なしの休日みたいな日になった。仕事は遅れているけれど、タイガースも勝ったし、個人的にはよい日だった...と。

レモンジーナの「ジ」について
オランジーナの姉妹品・レモンジーナが出たときに、「ジ」はなんだよ、という話があり、わたしもそう思った。しかも、話は「ジ」だけではない。オランジーナは、もとはフランスのメーカーの製品だが、オレンジはフランス語でもorangeだが、レモンはcitronなのである。
今日、そのレモンジーナを飲んでいて、はたと気づいた。そうか、あれは「レモン汁」の「ジ」なのだと。

√2に関する式
『数学の魔術師たち』(木村俊一著)を読んでいて、次の式を知った。インドの魔術師こと、ラマヌジャンによるものである。

ラマヌジャンの式
(式1)

これはきれいだ。『本格折り紙√2』でも紹介したかった。
で、バリエーションはあるのだろうか、と考えた。この式は、符号が- + + - + +というパターンだが、当然思いつくのは、- + - +という単純な繰り返しである。すると、これもきれいな結果だった(φは黄金比)

eq2
(式2)(追記:符号の間違いをなおした 9/16)

しかし、この式2は当然既知、というか、ラマヌジャンもこれがあって式1を発想したのだろう。なお、この式の符号を反転させ、+ - + -にすると、次のように、黄金比になる。

黄金比
式3)

1と平方根の繰り返しで、黄金比が出てくること(式4)は知っていたが、2の+ -でも同じになるのであった。黄金比は、φ^2=1+φという性質があるので、当たり前といえば、当たり前なのだけれど、これも面白い。

黄金比
(式4)

さらに、2で符号を全部+にすると、結果は以下である。これもちょっと不思議だ。

=2
(式5)

そして、符号を全部 - にすると、値は1である。(追記 9/10)

これらの式の検算で、2sin(54°)=√(2+2sin(18°))を確かめようとして、間違えて別の計算をしてしまい、次のちょっと変な式も発見した。63°という値はなんか珍しい。直角の7/10である。

63度と36度
(式6)

七光
ALMA(アタカマ電波干渉計)の記念品のコースターに描かれた南十字星の星が七芒星だ。というより、アステリスク(星印)である。アステリスクの対称性はフォントによって異なり、五つ割や六つ割が多いが、七つ割のものもある。ということで、あらためて確認してみた。左端がそれで、「Marion」というフォントである。
ALMAコースター

◆「自立(?)するエビ」
エビ
これは、今日考案したものではないが、講習会に向いたモデルとしてつくったものである。「タツノオトシゴ」というモデルでも「立つの!オトシゴ」と、自立することを特徴としたが、これも同様だ。角度は15度系。