針金細工・「正十二辺体」2010/02/11 22:08

針金細工・正十二辺体 他
 昨日の針金細工はいまひとつ不本意だったが、初めてと言ってよい針金細工をしてみて、頂点に集まる稜(辺)の数が偶数の多面体は、針金による一筆書きで造形可能であることに気がついた。
 多分、すでにやっているひとがたくさんいると思うが、正八面体がなかなかきれいにできた。「面」がないので、「正十二辺体」と言うべきかもしれない。もっときちんとつくれば、工芸品としても、美しいものができそうだ。
 さらに、立方八面体(□6、△8)もつくってみようと思ったのだが、手元にある針金が尽きた。しかたがないので、とりあえず、図だけ描いてみた。

雨氷2010/02/12 12:44

雨氷
 昨晩から今朝にかけて、八ヶ岳南麓標高1000m付近は、地上気温は氷点下なのに、雨が降るという状態で、雨滴がものに触れたときに凍りつく、雨氷が発生していた。上空と地上の温度が逆転して、雨滴が過冷却(氷点下だが液体)になるときに起きる現象だ。車のウィンドウ全面が薄い氷の膜によるくもりガラス状になっていたのは、かなり珍しいというか、これだけ見事なのは初めて見た。路面も、これと似た状態になっていたのだろう、危険だった。

針金細工・多面体(多辺体)-つづき-2010/02/13 13:19

針金細工・多面体(多辺体)
 昨日、帰宅途中に日曜大工センターに寄って、針金を買ってきた。そして深夜まで、針金細工の立方八面体(正二十四辺体?:写真左上)をつくりながら、以下のことを考えた。

◇その1:面を充填する曲線
 これらの細工をするときに、暗黙裡に、ふたつのルールを課していた。まず、閉じたパスとすること。そして、線を交差させないこと、つまり、平面的グラフにするということだ。後者によって、この一筆書きは、ドラゴン曲線、コウモリ曲線(伏見先生の絵参照)に類する、平面を充填する曲線の球面版になっていたと言える。

 いままでわたしは、これらの曲線に関して頭の中で整理されておらず、ドラゴン曲線とヒルベルト曲線を混同していたこともあったが、針金細工体験により、それが整理された。

 面を充填する曲線と称される曲線には、すくなくとも、以下の二つのタイプがある。
(1)面の格子点を一回だけ全部通るタイプ。
(2)面の格子の線を一回だけ全部通るタイプ。
 前者は、ペアノ曲線、ヒルベルト曲線、シェルピンスキー曲線といったもので、ペアノ曲線はそれらの総称として使われることもある。これらは、ハミルトングラフの問題に対応する。
後者は、ドラゴン曲線、コウモリ曲線などである。これらは、オイラーグラフの問題(一筆書き)に対応する。針金細工は、後者にあたる。
(以上、認識に、誤りはないはず)

◇その2:数え上げの問題
 写真に載せた針金多面体(多辺体)は、それぞれその一例であり、針金の経路は何種類かある。それを数え上げる方法は、いくつか考えられるが、以下のようにすると、わかりやすく、じっさいに細工するときにも都合がよい。たとえば、正八面体。

・線が交差していないので、平面に展開が可能である。
・正八面体を、正四面体の頂点を切り落とした「切頂正四面体」として考える。
・正四面体の展開図は二種類である。(右下図参照)
・よって、「針金正八面体」つまり、切り落とした部分を穴とする「切頂正四面体」の展開図も二種類である。(右下図参照)

 立方八面体も「切頂立方体」と考えて、立方体の展開図である11種ということになるはずである。

◇その3:その他の立体
 ほかにつくりやすいかたちには、斜方立方八面体 (□18、△8)がある。
 また、本来一筆書きできない立体に線を加えて一筆書き可能にすることが考えられる。きれいなものは思い浮かんでいないけれど。

 以上、突如ハマった、針金細工多面体(多辺体)の小研究でありました。

針金細工-つづきの2-2010/02/14 18:51

針金細工
 予定していた週末仕事がはやく済んだので、針金細工がはかどり(?)、買ってきた針金5mを使い尽くしてしまった。

 折り紙は「高次元化した一筆書き」と言えるので、一筆書きの針金細工は、逆に「折り紙的」と言えなくもない。土星のようなかたち(写真左上)や、カタバミ(写真中上)などもやってみたが、まずは、純粋に幾何学的な造形がたのしい。

 そもそも、この突然の熱中には、『穴の開いた包み紙を閉じる 』以降、『自己補対(?!)八面体』や、『付箋ピラミッド』など、正八面体がいま一番のお気に入りのかたちであることが、ベースになっている。
 「いま一番のお気に入りのかたち」って、わけがわからないけれど、正八面体の、立方体より単純とも言える側面が、まだまだ汲み尽くされていない感じが気になっているのだ。
 この、かたちが単純であるとの印象は、面の数(8)、辺の数(12)、頂点の数(6)、そして、頂点に集まる辺と面の数(4)のいずれもが、偶数であることからくる。いろいろと扱いやすいのである。正八面体は、数ある多面体のなかでも最も「割り切りやすい」多面体なのではないか。

 写真右上のように、針金細工の正八面体に球を閉じ込めると、キャスターになる。これは、けっこう面白い。また、辺を円弧化してみたり、線の交差を許すとどうなるかも試行した。工芸品的には、コマ(写真左下)、撹拌棒(写真中下)、カード立て(写真右下:鈴をいれてみた)などになりそうだ。宝飾などで、すでに使われているパターンだと思うけれど。

二枚組・六角断面正八面体2010/02/15 23:58

二枚組・六角断面正八面体
 果たさねばならないことが山積みなのだが、頭の状態が落ちつかない。ふとしたすきまの時間に、思いつきが渋滞している感じになる。取り憑いているもののひとつは、正八面体である。
 こういうときは、すくなくともひとつでもアイデアを拾い上げて、それらしい成果をださないと、さらに頭が落ちつかなくなり、切り換えができなくなる。ということで、有望そうなものをすこし詰めてみたら、けっこうよいものができた。

 変則的な六角形二枚による正八面体である。1枚だとぐずぐずだが、組むとしっかりする。正方形に内接させたものもつくったが、シンプルなほうが本質がわかりやすい。ありそうでなかったものではないだろうか。

九枚組立方体2010/02/16 23:23

パズル「9」
 ゆえあって、9にちなんだパズルも考えている。いくつか9に関連する図形を考えてみた(図)のだが、どれも、いまひとつものになっていない。ひとつ実現したかったのは、九個組のユニット折り紙(モジュラー折り紙)なのだが、これもエレガントなものはできていない。

 折り紙としてのこだわりを捨てたら、3:2長方形九枚組という、けっこう面白いものができた。式でいえば、3×3×6=6×9だ。九枚どれも同じかたちだが、うち三枚は直角に折れ曲がっている。

 写真のものは、三色を使っているが、同じ色が接しないように三色では組めない。

 この分割が可能なことで、球面を合同な四辺形九つで分割が可能なのか…と一瞬考えた。むろん、そんなにうまくはいかない。球面上の「正六面体」の四辺形は、頂角が120度であるため、折れ曲がった長方形部分は、球面では、鼓型の六角形になるのだ。

3×9チェッカーキューブ2010/02/17 23:51

Conway Cube & Checker Cube
 9ピースのパズルと言えば、コンウェイキューブがそうであることを思い出した(図上)。33の立方体を基本にしたパズルは他にもあるが、ピースが9個と言えば、単位立方体3個からなるL字型9個で、(目のある)サイコロをつくるパズルもそうだ。

 そして、すでにあるものだろうなと思いつつ、33の立方体をチェッカー(市松)模様にして、それを9個のピースでつくることを考えてみた。単位立方体3個からなるピースのバリエーションは、色分けを含めて4種類になる。それらをふたつづつに、もうひとつ加えるというパターンがある。I字型を加えるのは簡単だが、L字型のほうは、それなりの難度がある。もうひとつは、「サイコロをつくるパズル」のチェッカー版で、L字×9である。これの解も、そう単純ではない。

「九辺体」2010/02/18 00:18

「九辺体」
 立方体の稜(辺)は、オイラーグラフ(一筆書き)ではないので、針金細工で立方体をつくろうとすると面倒になるが、一筆書き可能な辺の欠けた立方体も、面白いかたちをしているということに、さきほど、33パズルの図を描いているときに、似たような図を描くことになり、再認識した。
 そして、これは、昨晩と今晩考えていた、9に関する立体、9本の辺からなる立体なのであった。

9ピースキューブ2010/02/18 23:40

9ピースキューブ
 9ピースのキューブパズルのよいものができた。
 立方体を連結する方法は、面と面を合わせるだけではなく、辺と辺、点と点も考えられるので、三つの立方体の辺の連結パターンを数え上げたら、これが、ちょうど9種類になっていたのである。おおっと思いつつ、33の立方体がほんとうに組めるかという疑問があったが、これが可能であることが、いまわかった。前例がありそうな気もするが、これはよい。
 このパズルをじっさいにモノでつくる場合は、辺と辺の連結部分を三角材で補強し、その他の辺は、その補強材のサイズで面取りをすれば、うまくいくと思う。

ベーゴマ2010/02/20 00:16

ベーゴマ
 以前、福引きの景品で当たった、オリジナルデザイン権利付きベーゴマが届いた。
 このブログのタイトルの背景にも使っている、折鶴による風車というデザインにしたのだが、細い線がうまくでていないのは、ちょっと惜しい。でるはずと聞いていたのだけれど、単純な折鶴にしておけばよかったかも。