オイラーの多面体定理-つづき2008/10/28 23:54

オイラー
 前の記事の話は、柱面や錐面が「穴の空いた面」に相当する、ということで説明がつく、と納得した。じつは、前の記事の「単純多面体」の説明もちょっと編集して「各面にも全体にも」を加えて詳しくした。これは、オイラーの式が図左上のような多面体には成り立たないことを明らかにしておくためである。
 この例は、『数学小景』(高木貞治著)にあったものだ。立ち読みでしか見たことしかない本だったのだが、どこか記憶に残っていたのだろう、今日書店に寄る機会があって、確認した。
 図右上のような穴の空いた面があることによって、辺(稜)のつながりが分断されてしまうことが、話のキモである。柱面(錐面も同様)も、グラフ(つながりを示す図)にすれば、左下のような穴の空いたかたちになる。これを切り開いて平面にすることは、右下のように、分離した要素であるふたつの同心円に連結させる道をつけることになる。「可展面を切り開いて平面にする」ことは、位相幾何的な問題ではないように思えるが、ここではグラフを繋げるということにもなっているわけだ。
 なお、『数学小景』にも「二角形」、「もしも曲面で囲まれた多面体を許すならば」という記述があって、うなった。数学ファンなら読まなければいけない本だった。
 また、もしかしたら、北園克衛氏の詩にある「2角形」もこの本がヒントかとも思ったが、『円錐詩集』(1933)は、『数学小景』(1943)より古かったので、これもうなった。

コメント

コメントをどうぞ

※メールアドレスとURLの入力は必須ではありません。 入力されたメールアドレスは記事に反映されず、ブログの管理者のみが参照できます。

※投稿には管理者が設定した質問に答える必要があります。

名前:
メールアドレス:
URL:
次の質問に答えてください:
スパム対策:このブログの作者は?(漢字。姓名の間に空白なし)

コメント:

トラックバック

このエントリのトラックバックURL: http://origami.asablo.jp/blog/2008/10/28/3853467/tb

※なお、送られたトラックバックはブログの管理者が確認するまで公開されません。